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Abstract 

 

Additive Manufacturing (AM) is increasingly used to design new products.  

This is possible due to the further development of the AM-processes and 

materials. The lack of quality assurance of AM built parts is a key 

technological barrier that prevents manufacturers from adopting. The quality 

of an additive manufactured part is influenced by more than 50 parameters, 

which make process control difficult. Current research deals with using real 

time monitoring of the melt pool as feedback control for laser power.  

 

This paper illustrates challenges and opportunities of applying statistical predictive 

modeling and unsupervised learning to control additive manufacturing. In 

particular, an approach how to build a feedforward controller will be 

discussed. 
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1 INTRODUCTION 

 

Additive Manufacturing (AM) is increasingly used to design new products.  

This is possible due to the further development of the AM-Processes and 

materials. The less of assurance of quality of AM built part is a key 

technological barrier that prevents manufacturers from adopting Am 

technologies especially for high-value applications where component failure 

cannot be tolerated [1]. The lack of quality implies inadequate dimensional 

tolerances, surface roughness, embedded material discontinuities, and 

defects. Part quality issues may be attributed to AM process parameter 

settings. The settings are typically chosen by a trial and error process, which 

is time-consuming. More and more modeling is used to get a deeper 

understanding of the physics of AM process. Significant effort has been 

dedicated to the search of predetermined optimal processing conditions 

which result in desired mechanical properties for a given part. This 

optimization can be done with commercial modeling packages, mostly based 

on finite element methods. However, this approach is not economical nor 
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robust enough to deal with perturbations. Uncertainty in the simulation inputs 

and simplification of physical phenomena lead to uncertainty in the process 

parameters and thus the optimization is less beneficial. [2] [3] 

 

Process control in general can limit the lack of quality assurance of AM built 

parts and the lack of the known variance of optimized process parameter from 

physical models. 

 

This paper will discuss a new approach to using metamodel technologies to 

enable process optimization, to improve the AM part quality and to reduce the 

number of insufficient AM parts. The main goal is to reduce the waste of time 

and money by either detecting major errors of the AM part in a very early 

stage and stop the building job or fixing an expected defect during the build 

process by changing process parameters. 

 

2 STATE OF THE ART 

 

Using additive manufacturing to build a part with certain desired properties 

such as dimensional accuracy, part density, mechanical properties or 

microstructures can be challenging for several reasons. First, the number of 

parameters that have to be determined in an AM process is large. Second, 

some parameter can vary during the build process. For example, the porosity 

of powder bed may change depending on the distribution of the powder size 

particles in a layer. Third, some parameter could vary across builds, for 

example, if the lens focusing the laser beam gets polluted. Finally some 

material properties such as the absorptivity cannot be known precisely. In 

conclusion, these factors introduce uncertainties that influence the 

repeatability of the process and create uncertainties in the properties of the 

AM parts [4]. 

 

2.1 Process parameters correlation 

 

The view on process parameter correlation follows the ideas of Mani et al. [5]. 

In an AM process there exist correlations between the process parameters, 

process signatures and product qualities. The AM process parameters are 

the inputs, which sometimes determine with uncertainties. The process 

parameters can be categorized either in controllable such as laser power and 

scan speed or predefined parameters. For example, material properties are 

predefined for every build job. The process signatures are dynamic 

characteristics of the powder heating, melting and solidification processes as 

they occur during the AM process. They are categorized into either 

observable that means measurable signatures or derived and determined 

from analytical modeling or simulation. The product qualities are also grouped 

in geometric, mechanical and physical qualities. Figure 1 identifies the 

correlation between the three categories which should facilitate the 

development of in process sensing and real-time control of AM process. 
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Figure 1: Correlation between process parameters, process signatures and 

product qualities [5]. 

 

Mani et al. identified a large number of process signatures which may 

potentially be monitored to identify irregularities that might result in poor 

product quality [5]. 

 

The basic idea as given in Figure 1 is categorizing the parameters and 

identification of their general relationship. This is used as foundation for the 

described models in chapter 3. 

 

2.2 Computational models 

 

Process signatures that cannot be measured during production, need 

simulation models for derived parameters like melt pool deep or residual 

stress. A number of scientific investigations were devoted to the numerical 

analysis of the thermal processes during laser beam melting. One of the 

studies was conducted by IIin et al. [6]. This study focuses on the numerical 

analysis of the temperature distribution in the vicinity of the melt pool during 

laser beam melting process depending on the local geometry of the 

generated part. They use a simulation model to optimize the laser beam 

melting technique towards a stable formation of the melt pool during the entire 

generating process. 

 

Commercial simulation tools allow predictions of the temperature during the 

build process and can therefore be used to forecast the distortion and residual 

stresses in the AM part. Normally these predictions take not into account the 

uncertainty of the input parameters or the variability in the process itself. 

 

Running these simulation tools is a preliminary work for the optimization of 

process parameters like laser power or laser scan speed. It is possible to 

calculate with these simulations tools several controllable process parameters 

like the needed laser power, laser scan speed etc. These values can be 
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calculated for every position on every layer. Because of the long computing 

times, it is not possible to use this kind of technology during the build process 

to control the process parameter. 

 

2.3 Current control schemes in AM 

 

Process control has been identified as an important tool to overcome the lack 

of quality and reliability in AM processes. Feedback control allows the 

intelligent modulation of process parameters following measurements of 

process signatures. Feedback control approaches for AM are often utilized in 

directed energy deposition processes. Most approaches are based on 

thermal signals gathered with cameras and photodetectors. The typically 

used algorithms are based on proportional-integral derivative (PID) 

controllers [3] [7]. Sometimes more advanced approaches, like model 

predictive control (MPC), are used. The feedback control is used with process 

signatures which are measurable or with derived signatures. A feedforward 

control is used for tuning the laser cladding melt pool shape online [8]. 

Adopting feedback control methods in AM is constrained by significant 

barriers. One is the lack of appropriate models for online estimation and 

control as well as the high sampling rates required to capture fast 

solidification dynamics in metal based AM. 

 

3 RESEARCH APPROACH 

 

The use of statistical methods will be useful to handle the process control in 

AM systems. Normally an AM process, for example, the selective laser 

melting (SLM) process, depends on about 50 parameters [9]. Some 

parameters are precisely known, other parameters have a higher variance. 

To manage the process control with predictive modeling two hypotheses must 

be valid. First, an effective direction must be existent in the process. This 

means small defects in layer n lead to errors in future layers n+y. Every AM 

part is sliced in layers. y is the number of layers that have been built until the 

known defect at layer n becomes a crucial defect at layer n+y, which in turn 

damages the AM part (see Figure 2). The second hypothesis implies a 

different significance of the layers. Not every layer has the same importance 

for future layers. The previous layer is most important for the following one. 

Former layers are less important. 

 

 
 

Figure 2: Hypothesis error spread. 
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A single layer is generated during one laser scan. A layer itself is divided in 

cubes. Every cube has the height of the layer thickness and the area is the 

square of the track distance + variance. A cube as defined here may contain 

more than one voxel. It is important that all dimensions of the cube relate 

directly to process parameters as illustrated in Figure 3. 

 

 
 

Figure 3: Geometry with cubes, voxel and laser beam. 

 

The basic idea is to detect a situation that will lead to a potential low-quality 

piece, before the situation itself happens. Practically this means small 

deviations in layer n lead in summary to a relevant error in layer n+y. After 

detection of small defects, the parameters might be adjusted in layer n+x to 

avoid the error in n+y, assuming x is smaller than y. Therefore it is important 

that calculation time for forecasting errors from the data volume must be 

shorter than the time for production from layer n until layer n+x. 

 

3.1 Predictive models in general 

 

Predictive modeling is used to estimate an unknown dependency from known 

input-output data. Input variables might include quantities of different process 

parameters by a cube. Output variables might include an indication of the level 

of a cube of whether a defect happens or not. Output variables are also known 

as targets in predictive modeling. 

 

In deployment, there is likely to be a time gap between using the model that 

has been developed and carrying out the activity. The analysis period 

consists of the base period (for the input variables) and the aim or target 

period (for the target or output variables). The base period always comes 

before the target period and reflects the time gap between running a model 

and using the results of the model (Figure 4) [10]. 
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Figure 4: Development of models learning phase. 

 

To visualize how the general set up can be used for AM processes the model 

learnings phases are added to the research approach. 

 

Depending on former activities, an anticipation of the deployment time gap 

(y) can be made. Then a temporal mismatch can be added into the modeling 

data. This is crucial, because input variables such as geometry, laser power 

or melt pool temperature are generated for every layer until layer n and target 

variables generated e.g. out of the melt pool temperature are from a later 

period, say layer n+y. Note that the time period (y) may differ depending on 

the type of the AM process, AM machine or material. 

 

This temporal mismatch of variables is a major difference to other statistical 

models and to the above-described state of the art solutions. It is possible 

that the measurement of some parameter until layer n is used as input 

variables and adding the measurements at layer n+y to define the target 

variable. Besides the temporal shift in the data, the availability of the data also 

needs to be considered. 

 

 
 

Figure 5: Phases in AM process. 
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It is to consider that at one point in time (Time 1) the model has to be built, at 

that time the target must be known. The whole input and target data are given 

from the past. After the model is validated it will be deployed at time 2 when 

only input variables are assessable. Within this deployment, a prediction of 

the target is generated. The prediction in turn gives an answer on the question 

whether the target is leading to a potential defect or the quality of the AM part 

is fine. Once the model is validated and established it can be also used for 

time 3, time 4 and so on. 

 

4 PRAGMATIC WORKFLOW 

 

To incorporate this knowledge and technology to a solution, which provides 

the opportunity to control and react on upcoming defects in any AM-process, 

the following workflow is defined. In general the Finite Element Modeling 

(FEM) and two metamodels (I and II) will be employed. The Finite Element 

Modeling is used to generate data for an ideal situation. This data will be used 

to build a simplified metamodel (I) that can be used to regulate the process 

to avoid potential future defects. Afterwards the likelihood of having a 

potential future defect is calculated by metamodel (I). 

 

For phase time 1 following pre work has to be done. 

 

• Define measurable outcome parameters, which show the optimum 

scope for results. 

• Development and usage of relevant design of experiments (DOE). 

• Data generation by DOE. Data that leads to good AM parts and data 

represent bad or defected parts are generated. 

• Identification of potential standard parameters for a simplified 

metamodel (II) for deviation correction. 

• Computer simulation (FEM) to identify the ideal outcome parameter 

per cube/per layer. 

• Build a second metamodel (I) based on the data generated in the 

simulation. The aim of the model is to find a simplified and fast equation 

to estimate the outcome parameters as good as possible. 

• As input parameters only machine parameters and known physical 

equations are accepted. 
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Figure 6: Deployment predictive control process. 

 

Based on the workflow the following predictive control process can be 

developed. 

 

Figure 6 shows the control process: 

 

• Step 1: Start with calculating the ideal outcome parameter (�ideal) for 

every layer and cube with use of metamodel (I). Can be done before 

starting the building process itself in the preparation phase. 

• Step 2: With metamodel (I) outcome parameters (�(�+y)) of layer n+y 

based on the actual measured data until layer n are estimated. 

• Step 3: Compare the ideal outcome parameter (�ideal) with estimated 

outcome parameter (�(�+y)). 

• Step 4: Calculate differences and correct some process parameter at 

layer n+x with the help of metamodel (II). 

• Step 5: Use the corrected process parameter at layer n+x  

 

The amount of layer x depends on the time for calculation and adjustment of 

the process parameter. This time must be less or equal compared to the time 

needed for production from layer n to n+x. 

 

5 CONCLUSION AND OUTLOOK 

 

The development of metamodels can be used to implement simple 

calculation rules for AM-process. Ideal outcome parameters �(�+y) for every 

cube in a layer can be estimated easily for different forms and geometries. 

The measured data until layer n and estimation of outcome parameters �(�+y) 

lead to a change in process parameter at layer n+x. This in turn leads to a 

better part quality and therefore to enormous time savings. 

 

Based on this approach a controlling of the production process will be 

possible. A next step will be to evaluate the applicability of the theoretical 

concept described in this paper. The concept must be proven in an industry 

environment together with industrial partners. 
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